

Low-field magnetic relaxation effects in noncentrosymmetric CePt₃Si

C. F. Miclea¹, C. Miclea⁴, A. C. Mota¹, E. Bauer², M. Sigrist³ and F. Steglich¹, C.T.Miclea⁴

CePt₃Si- heavy fermion SC with noncentrosymmetric crystal structure

Stru	cture
•Spa	ce group P4mm
	a=b=0.4072 nm
	c=0.5442 nm
	c/a=1.34
Mag	netism
Anti	ferromagnetic order sets in below $T_n=2.2$ k
Unce	onventional Superconductivity

- discovered by Bauer et al. in uperconducting Superconducting phase transition of polycrystalline samples at Tc=0.75 K [1]. • For single crystals Tc=0.45K [2]. Clean limit superconductor l₂/ξ₀=8
- B_{c2} =4-5T, well above the Clogston limit B_p =1.1 T.
- Broken inversion symmetry due to the absence of the mirror place c↔-c
- => antisymmetric spin-orbit coupling which allows for a mixing of singlet

2.0x10

and triplet Cooper-pairing. • Thermal conductivity and penetration law reveal power laws suggesting lines of nodes in the SC gap.

Experiment; Low temperature SQUID magnetometer

- ac susceptibility in very low fields ≈ 1 mOe;
- · remanent magnetization
- flux creep.

Relaxation measurements

- Upper magnetic field 2000 Oe;
 Temperatures down to 30 mK with rotary mixture pump;

A CePt₃Si single crystal with mass m=140.01 mg is used in both, susceptibility and flux dynamic investigations.

Low temperature AC susceptibility

the c-axis clear signature of the superconducting phase transition in both χ' and $\chi'' T_c^{=}$ 450 mk. • Transition width 0.1 K.

T₂ is different from the 750 mK obtained previously on polycrystalline samples but in good agreement with the specific heat result obtained on singlecrystals.

· At fixed temperature the remanent magnetization is measured as function of the external cycling field. • M_{rem} saturates above a Bean critical field B_c which decreases upon increasing the temperature.

· B = 500 Oe determined at the lowest temperature is used for the relaxation

measurement at all higher T

At fixed T the remanent magnetization of the sample is measured and than the sample is heated up above T_c and all the field is expelled out of the sample (inset). • The creep rate increases upon increasing temperature.

The decay show clear logarithmic time dependence as expected from the Kim-Anderson theory.

Remanent magnetization

• M_{rem} decreases linearly upon increasing temperature. · CePt₃Si shows a smaller critical current than observed in UBe₁₃. · Mrem reaches 0 at 410 mK consistent with the susceptibility data

Discussion

· The creep data where measured from 10 to 10000 s.

· Relaxation rate increases follows roughly a T-linear Kim-Anderson law (upper figure).

- $\Delta \Phi/M_{rem}$ well below 1% at all temperatures, where $\Delta \Phi$ is the flux expelled from the sample between 10 and 10000s.
- \bullet Creep rates are very low, lower than in any other superconductor \rightarrow is this due to very

high critical currents? • At T=0.3K, CePt₃Si has a critical current a factor of tree smaller than the one observed

in UBe13. Nevertheless the flux creep is almost two order of magnitude smaller in CePt₃Si. This is an indication that the low relaxation rate in CePt₃Si hints to possible new vortex physics caused probably by the special crystal structure

• Susceptibility Tc=0.450 mK in good agreement with specific heat measurements Mrem decreases linearly and reaches 0 at 0.41 K.

• The lower creep rates observed in a superconductor caused not by high critical currents.

Outlook:

Further measurements on the structure related LaPt₃Si ($T_c=0$ K).

E. Bauer et al., Phys.Rev. Lett. 92, 027003 (2004).
 Takeuchi et al., J.Mag. Mag.Matt. 0, 1 (2006).